Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Insurtechs are Thriving with Machine Learning. Here’s how.

Modern Insurance is only around 250 years old, about when the necessary statistical and mathematical tools to underwrite a business venture came to be. But statistical models, even the most advanced ones, need a very specific type of enriched data-diet for it to work optimally. Since then, the industry has always had to rely on data for ensuring its long financial health. For insurers to take on considerable risk, regardless of size, it draws on the reassurance of statistically-sound data that underpins the coverage needed (for issuance) to a fixed number. This ‘number’ will influence the amount of coverage (or claim) provided to the insuree and consequently the amount of premium to be collected.

Such is the reliance on data, that even the slightest erroneous mistake in the underwriter’s predictions could bankrupt, at times, even the economy. We’ve seen it before — when banks took on unqualified risks and approved subprime mortgage loans to borrowers with poor credit, creating the imploding housing bubble of ‘08.

The nature of risk simply evolves and devolves; while Insurers learn progressively with each individual case, adsorbing enormous amounts of data into their carefully crafted risk-models. These models then naturally aid in the manual effort of several hundred data scientists (in the case of large insurers) poring over immense amounts of psychographic, behavioral and environmental attributes for evaluating an entity’s risk profile. Yet, even with these measures, the risk is unquantifiable if the data scientist doesn’t have a large or clear enough picture to make sense of all the inbound information. 

In the age of machine intelligence, data is prime fodder for these advanced algorithms. They are designed to thrive on large datasets — in fact the larger the size, the better the system learns. How could it not? An AI system is decidedly 1000x faster than human computing, raising accuracy levels to near perfection and improving straight-through processing to nearly one in every two decisions made without human intervention, today.


Source: Accenture Report — Machine Learning in Insurance

20.4 billion things will be connected by 2020 creating an unprecedented level of data handling & insight derivation capacity, as BFSI companies alone will spend US$25 billion on AI in 2020 (as reported by IDC research). Since 2012, more than $10 billion has been invested in insurtechs.

For 2020 and beyond, customers will come to expect better personalization from their insurance policies, especially millennials and younger. While the incumbent, slow-moving giants of traditional insurance should surprise no one as being the last to innovate — new insurtechs like Flyreel are changing the paradigm by piloting Machine Learning projects that directly translates to critical business goals.

According to McKinsey, digital insurers are already achieving better financial and efficient go-to-market results compared to traditional players.

Here are three ways, insurtechs are gaining ground with Machine Learning (specifically where learning from data is involved):

  1. Risk Prediction
    Predicting and evaluating risk is insurance’ oldest use case, and research reveals it will continue to be so. With ML and advanced algorithms, insurers can process big data from multiple data points such as policy contracts, claims data, weather parameters, crime data, IoT and sensor data.
    By Analysing existing data, identifying anomalies, tracking recurring usage patterns and then delivering accurate predictions and diagnosis through vertically-tuned algorithms — ML-based platforms can identify risk ratios and risk profiles that enable insurers to customize policies for individual customers in real-time. This differs from ‘off-the-shelf’ platforms which can only be utilized to solve a narrow set of problems.

  2. Customer Lifetime Value (CLV) Prediction
    CLV is a complex metric that represents the value of a customer to an organization as the difference between the revenue gained and expenses incurred – all projected onto the entire relationship with a customer, including the future.
    Insurers can now predict CLV using customer behavior data that allows them to assess the customer’s potential profitability for the insurer. Behavior-based learning models can be applied to forecast retention or cross-buying, all critical factors in the company’s future income. ML tools also help insurers to predict the likelihood of particular customer behavior – for example, their maintenance of the policies or surrender.

  3. Personalization Insights Engine
    User data from AI, machine learning and behavioral and social sciences can provide actionable insights in real time. For example, simulation and learning capabilities allow companies to discover new customer groups, to help companies personalize customer engagement, risk assessment, and forecasting by combining data from multiple sources.
    A common challenge is capturing data from multiple sources and turning the data into insights that can inform business decisions across many functions. With machine learning, insurers will be able to underwrite, adjust customer journeys, resolve claims and adapt offerings.

ML-based solutions bring back real value to insurers — either delivered as a standalone product or as a part of an embedded process/service. The key for insurers is to pilot ML projects of smaller scale that can bring about cost and time savings across the organization almost immediately and then improve in easier iterative sprints for more future-ready permanence, rather than taking on the task of a complete enterprise makeover from day one!

For more information about how we can help enterprises begin their ML transformation, reach us on hello@mantralabsglobal.com

Cancel

Knowledge thats worth delivered in your inbox

Why Netflix Broke Itself: Was It Success Rewritten Through Platform Engineering?

By :

Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it is today. Back then, they were a DVD-rental-by-mail service trying to go digital. But here’s the kicker: they hit a major pitfall. The internet was booming, and people were binge-watching shows like never before, but Netflix’s infrastructure couldn’t handle the load. Their single, massive system—what techies call a “monolith”—was creaking under pressure. Slow load times and buffering wheels plagued the experience, a nightmare for any platform or app development company trying to scale

That’s when Netflix decided to do something wild—they broke their monolith into smaller pieces. It was microservices, the tech equivalent of turning one giant pizza into bite-sized slices. Instead of one colossal system doing everything from streaming to recommendations, each piece of Netflix’s architecture became a specialist—one service handled streaming, another handled recommendations, another managed user data, and so on.

But microservices alone weren’t enough. What if one slice of pizza burns? Would the rest of the meal be ruined? Netflix wasn’t about to let a burnt crust take down the whole operation. That’s when they introduced the Circuit Breaker Pattern—just like a home electrical circuit that prevents a total blackout when one fuse blows. Their famous Hystrix tool allowed services to fail without taking down the entire platform. 

Fast-forward to today: Netflix isn’t just serving you movie marathons, it’s a digital powerhouse, an icon in platform engineering; it’s deploying new code thousands of times per day without breaking a sweat. They handle 208 million subscribers streaming over 1 billion hours of content every week. Trends in Platform engineering transformed Netflix into an application dev platform with self-service capabilities, supporting app developers and fostering a culture of continuous deployment.

Did Netflix bring order to chaos?

Netflix didn’t just solve its own problem. They blazed the trail for a movement: platform engineering. Now, every company wants a piece of that action. What Netflix did was essentially build an internal platform that developers could innovate without dealing with infrastructure headaches, a dream scenario for any application developer or app development company seeking seamless workflows.

And it’s not just for the big players like Netflix anymore. Across industries, companies are using platform engineering to create Internal Developer Platforms (IDPs)—one-stop shops for mobile application developers to create, test, and deploy apps without waiting on traditional IT. According to Gartner, 80% of organizations will adopt platform engineering by 2025 because it makes everything faster and more efficient, a game-changer for any mobile app developer or development software firm.

All anybody has to do is to make sure the tools are actually connected and working together. To make the most of it. That’s where modern trends like self-service platforms and composable architectures come in. You build, you scale, you innovate.achieving what mobile app dev and web-based development needs And all without breaking a sweat.

Source: getport.io

Is Mantra Labs Redefining Platform Engineering?

We didn’t just learn from Netflix’s playbook; we’re writing our own chapters in platform engineering. One example of this? Our work with one of India’s leading private-sector general insurance companies.

Their existing DevOps system was like Netflix’s old monolith: complex, clunky, and slowing them down. Multiple teams, diverse workflows, and a lack of standardization were crippling their ability to innovate. Worse yet, they were stuck in a ticket-driven approach, which led to reactive fixes rather than proactive growth. Observability gaps meant they were often solving the wrong problems, without any real insight into what was happening under the hood.

That’s where Mantra Labs stepped in. Mantra Labs brought in the pillars of platform engineering:

Standardization: We unified their workflows, creating a single source of truth for teams across the board.

Customization:  Our tailored platform engineering approach addressed the unique demands of their various application development teams.

Traceability: With better observability tools, they could now track their workflows, giving them real-time insights into system health and potential bottlenecks—an essential feature for web and app development and agile software development.

We didn’t just slap a band-aid on the problem; we overhauled their entire infrastructure. By centralizing infrastructure management and removing the ticket-driven chaos, we gave them a self-service platform—where teams could deploy new code without waiting in line. The results? Faster workflows, better adoption of tools, and an infrastructure ready for future growth.

But we didn’t stop there. We solved the critical observability gaps—providing real-time data that helped the insurance giant avoid potential pitfalls before they happened. With our approach, they no longer had to “hope” that things would go right. They could see it happening in real-time which is a major advantage in cross-platform mobile application development and cloud-based web hosting.

The Future of Platform Engineering: What’s Next?

As we look forward, platform engineering will continue to drive innovation, enabling companies to build scalable, resilient systems that adapt to future challenges—whether it’s AI-driven automation or self-healing platforms.

If you’re ready to make the leap into platform engineering, Mantra Labs is here to guide you. Whether you’re aiming for smoother workflows, enhanced observability, or scalable infrastructure, we’ve got the tools and expertise to get you there.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot