Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(8)

Customer Journey(17)

Design(43)

Solar Industry(8)

User Experience(66)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(11)

Enterprise Solution(29)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(38)

Insurtech(66)

Product Innovation(57)

Solutions(22)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(143)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(19)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Medical Image Management: DICOM Images Sharing Process

By :
5 minutes, 29 seconds read

For modern healthcare organizations, extending better patient care across the service continuum involves new challenges that surround sharing information over a distributed network. Effectively sharing patient information remains a challenge. However, the inability to access these records in a time-sensitive manner results in re-imaging and re-testing the patients. It affects both — ‘time-to-treatment’ and the bottom line. Effective medical image management thus becomes crucial for every digital healthcare enterprise. 

The release process for medical images is altogether complicated — brimming with security related-risks. Images (such as X-Ray Scans, MRI scans, PET scans, etc.) are created and released across several departments and systems while being purposefully kept ‘out-of-reach’ from a host of unauthorized users.

Training & controls on release policies and procedures require ‘health information management’ expertise. It’s because image Handling (electronically) can become susceptible to data corruption, complex accessibility/sharing issues and high-security risks. All of these raise potential red flags for health information management (HIM) professionals.

So how does Medical Image sharing work in this environment? What, if any — are the safeguards surrounding the ‘release’ process?

Medical Image Management: Sharing DICOM Images across healthcare enterprises

Before we go further, let’s delve into the term ‘Medical Imaging’. According to the WHO, the technique embodies different imaging modalities and processes to image the human body (creating visual representations) for diagnostic and treatment purposes. — making it crucial for improving public health initiatives across all population groups.

First, the image is captured using a medical imaging device (routine imaging techniques like ultrasound, MRI, etc.). Then it is necessary to archive and store the images for future use and further processing. Unlike regular images (.png, .jpeg), medical images use DICOM format for storage. DICOM is Digital Imaging and Communication in Medicine standard. The medical practitioner responsible for acquiring and interpreting such medical images is a ‘Radiologist’. And the system they rely on for storing electronic image data is ‘PACS’ (Picture Archiving and Communication System).

If a healthcare organization or an outside consultant (physician, clinician) needs access to an individual patient’s medical images, then the access and retrieval will have to go through PACS. Typically, a Radiologist has authority to control and operate PACS.

Here is a simple process diagram of a medical imaging system —

medical imaging system process diagram

A Typical HIPAA-compliant Medical Imaging Management System places a request (for a specific file) to ‘PACS’ via an intermediary system known as ‘Edge Server’. The sole purpose of the Edge Server is to function as a request-node so that other hospitals or physicians can contact the particular radiologist (who possesses the images stored in PACS) and place a request to access a copy of the file in question.

[Related: Modern Medical Enterprises Absolutely Need Test Automation. Here’s Why.]

Medical image sharing use cases

Critical use cases arise for medical image sharing involving support for:

  • Remote image viewing (out of network)
  • Specialist consults
  • Telehealth (examples such as teleburn, telestroke)
  • Trauma transfers
  • Ambulatory image review

Typically, PACS store digital medical images locally for retrieval. A PACS consists of four major components: 

  1. The imaging modalities such as X-ray plain film (PF), CT and MRI 
  2. a secure network for the transmission of patient information
  3. workstations for interpreting and reviewing images
  4. archives for the storage and retrieval of images and reports. 

To communicate with the PACS server we use DICOM messages that are similar to DICOM image ‘headers”, but with different attributes. The Edge Server manages several functions that allow users to sort through hundreds of thousands of large-volume data and retrieve a specific file from a database either stored in ‘PACS’ or on the ‘MIMS’.

Each of the three highlighted sections (see diagram) can perform various functions, while communication is defined through specific rules and standards that are legally enforced and universally followed.

DICOM medical image sharing via PACS and MIMS

Through the ‘Edge Server’, we can access images stored in PACS. The ‘Management Services’ operation is the first and foremost feature. It means that a user can control & maintain the complete functionality of the server through this. Using ‘Remote Authentication’, users can obtain centralized authorization and authentication to request files from PACS. Please note, Remote Authentication is a networking protocol operating by way of specific ports.

To verify basic DICOM connectivity to the server — i.e, to check if the server is live or not, a C-Echo message is sent to ping the server, after which it will wait for its response. Once identifying the server as live, a user can perform querying and retrieval-based operations. Next, the user can begin the process of requesting DICOM images from the Medical Image Management System — known as ‘Ingestion’. DICOM Ingestion involves pre-assigned IP and port addresses (default ports are 2104-2111).

Basic DICOM Operations

Client: First, it’s important to check the location of the specific image(s) on a particular server. For this, a query-based C-FIND operation sends a request to the server. The user establishes a network connection to the PACS server and prepares a C-FIND request message (which is a list of DICOM attributes). The user then fills in the C-FIND request message with ‘keys’ that match. (E.g. to query for a patient ID, the user fills the patient ID attribute with the patient’s ID.) Then, the C-FIND request message is sent to the server.

Server: The server reverts a list of C-FIND response messages. Each of these messages contain a list of DICOM attributes with values for each match. It then initiates C-MOVE request using the DICOM network protocol to retrieve images from the PACS server. 

One can retrieve images at the Study, Series or Image (instance) level. The C-MOVE request specifies where the retrieved instances should be sent (using separate C-STORE messages). The C-STORE operation, also known as DICOM Push simply pushes (sends) the images to the PACS server (or P2P — Push to PACS). 

C-STORE message implements the DICOM storage service. The SCU sends a C-STORE-RQ (request) message to the server, which includes the actual dataset to transfer. The server answers by returning a C-STORE-RSP (response) message to the user, communicating success or failure of the storage request.

DICOM Images Benefits

Using DICOM images, health management professionals, physicians, and radiologists can utilize secure protocols in handling confidential medical image data. It extends the ability to view such images discreetly and instantly; avoiding duplication costs; and reducing unnecessary radiation exposure to patients.

Medical Image Sharing furthers the “Health 2.0” initiative by being able to instantly and electronically exchange medical information between physicians, as well as with patients — improving communication within the industry.

[Related: How AI is innovating healthcare sector?]

About the author: Rijin Raj is a Senior Software Engineer-QA at Mantra Labs, Bangalore. He is a seasoned tester and backbone of the organization with non-compromising attention to details.

Related:

DICOM FAQs

What is the DICOM Image format?

DICOM stands for — Digital Imaging and Communication. It is a medical standard for sharing a patient’s MRI, X-ray, and other image files over the internet.

How are DICOM Images stored?

Unlike regular images (png, jpg, etc.) DICOM is a secure format for storing confidential medical images. Usually, PACS (Picture Archiving and Communication System) and MIMS (Medical Image Management System) are used to store DICOM Images.

What is DICOM used for?

DICOM is used for securely storing and retrieving confidential images in distributed networks (internet).

Why is DICOM important?

Using DICOM images, health management professionals, physicians, and radiologists can securely handle confidential medical image data.

Cancel

Knowledge thats worth delivered in your inbox

Why Netflix Broke Itself: Was It Success Rewritten Through Platform Engineering?

By :

Let’s take a trip back in time—2008. Netflix was nothing like the media juggernaut it is today. Back then, they were a DVD-rental-by-mail service trying to go digital. But here’s the kicker: they hit a major pitfall. The internet was booming, and people were binge-watching shows like never before, but Netflix’s infrastructure couldn’t handle the load. Their single, massive system—what techies call a “monolith”—was creaking under pressure. Slow load times and buffering wheels plagued the experience, a nightmare for any platform or app development company trying to scale

That’s when Netflix decided to do something wild—they broke their monolith into smaller pieces. It was microservices, the tech equivalent of turning one giant pizza into bite-sized slices. Instead of one colossal system doing everything from streaming to recommendations, each piece of Netflix’s architecture became a specialist—one service handled streaming, another handled recommendations, another managed user data, and so on.

But microservices alone weren’t enough. What if one slice of pizza burns? Would the rest of the meal be ruined? Netflix wasn’t about to let a burnt crust take down the whole operation. That’s when they introduced the Circuit Breaker Pattern—just like a home electrical circuit that prevents a total blackout when one fuse blows. Their famous Hystrix tool allowed services to fail without taking down the entire platform. 

Fast-forward to today: Netflix isn’t just serving you movie marathons, it’s a digital powerhouse, an icon in platform engineering; it’s deploying new code thousands of times per day without breaking a sweat. They handle 208 million subscribers streaming over 1 billion hours of content every week. Trends in Platform engineering transformed Netflix into an application dev platform with self-service capabilities, supporting app developers and fostering a culture of continuous deployment.

Did Netflix bring order to chaos?

Netflix didn’t just solve its own problem. They blazed the trail for a movement: platform engineering. Now, every company wants a piece of that action. What Netflix did was essentially build an internal platform that developers could innovate without dealing with infrastructure headaches, a dream scenario for any application developer or app development company seeking seamless workflows.

And it’s not just for the big players like Netflix anymore. Across industries, companies are using platform engineering to create Internal Developer Platforms (IDPs)—one-stop shops for mobile application developers to create, test, and deploy apps without waiting on traditional IT. According to Gartner, 80% of organizations will adopt platform engineering by 2025 because it makes everything faster and more efficient, a game-changer for any mobile app developer or development software firm.

All anybody has to do is to make sure the tools are actually connected and working together. To make the most of it. That’s where modern trends like self-service platforms and composable architectures come in. You build, you scale, you innovate.achieving what mobile app dev and web-based development needs And all without breaking a sweat.

Source: getport.io

Is Mantra Labs Redefining Platform Engineering?

We didn’t just learn from Netflix’s playbook; we’re writing our own chapters in platform engineering. One example of this? Our work with one of India’s leading private-sector general insurance companies.

Their existing DevOps system was like Netflix’s old monolith: complex, clunky, and slowing them down. Multiple teams, diverse workflows, and a lack of standardization were crippling their ability to innovate. Worse yet, they were stuck in a ticket-driven approach, which led to reactive fixes rather than proactive growth. Observability gaps meant they were often solving the wrong problems, without any real insight into what was happening under the hood.

That’s where Mantra Labs stepped in. Mantra Labs brought in the pillars of platform engineering:

Standardization: We unified their workflows, creating a single source of truth for teams across the board.

Customization:  Our tailored platform engineering approach addressed the unique demands of their various application development teams.

Traceability: With better observability tools, they could now track their workflows, giving them real-time insights into system health and potential bottlenecks—an essential feature for web and app development and agile software development.

We didn’t just slap a band-aid on the problem; we overhauled their entire infrastructure. By centralizing infrastructure management and removing the ticket-driven chaos, we gave them a self-service platform—where teams could deploy new code without waiting in line. The results? Faster workflows, better adoption of tools, and an infrastructure ready for future growth.

But we didn’t stop there. We solved the critical observability gaps—providing real-time data that helped the insurance giant avoid potential pitfalls before they happened. With our approach, they no longer had to “hope” that things would go right. They could see it happening in real-time which is a major advantage in cross-platform mobile application development and cloud-based web hosting.

The Future of Platform Engineering: What’s Next?

As we look forward, platform engineering will continue to drive innovation, enabling companies to build scalable, resilient systems that adapt to future challenges—whether it’s AI-driven automation or self-healing platforms.

If you’re ready to make the leap into platform engineering, Mantra Labs is here to guide you. Whether you’re aiming for smoother workflows, enhanced observability, or scalable infrastructure, we’ve got the tools and expertise to get you there.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot