Try : Insurtech, Application Development

AgriTech(1)

Augmented Reality(20)

Clean Tech(7)

Customer Journey(17)

Design(41)

Solar Industry(7)

User Experience(64)

Edtech(10)

Events(34)

HR Tech(3)

Interviews(10)

Life@mantra(11)

Logistics(5)

Strategy(18)

Testing(9)

Android(48)

Backend(32)

Dev Ops(10)

Enterprise Solution(28)

Technology Modernization(7)

Frontend(29)

iOS(43)

Javascript(15)

AI in Insurance(36)

Insurtech(64)

Product Innovation(55)

Solutions(21)

E-health(12)

HealthTech(24)

mHealth(5)

Telehealth Care(4)

Telemedicine(5)

Artificial Intelligence(139)

Bitcoin(8)

Blockchain(19)

Cognitive Computing(7)

Computer Vision(8)

Data Science(18)

FinTech(51)

Banking(7)

Intelligent Automation(27)

Machine Learning(47)

Natural Language Processing(14)

expand Menu Filters

Essential Checklist for Web Optimization

In this competitive technological era, industries have bloomed in a way that we now have a vast array of options to pick from whether we need to shop online or use any services. Therefore, it becomes imperative for businesses to monitor users’ changing demands and keep a close watch on how well their website or app is performing. 

Web/app loading-related metrics:

Imagine going to a website to avail of a service or to shop online, and the website struggles to load every time you select something, let’s say it’s more than 30 seconds. It disrupts the user’s seamless buying experience and eventually causes them to lose interest in just a few minutes. 

Search engines consider factors like page load time, responsiveness, mobile friendliness, etc. when ranking websites. It is necessary to do a complete website analysis and perform a site crawl to comprehend its structure, URL patterns, and template.

Here are a few vital parameters that can help you to do a self-check and understand how easy is your website/app to use for your customers and how you can optimize it for better results. 

Largest Colorful Paint (LCP):

LCP denotes a point when the website’s main content is likely loaded in the page load timeline, making it a crucial user-centric statistic for gauging perceived load speed. A fast LCP tells the user that the page is useful. LCP also indicates the render time of the largest picture or text block visible within the viewport. Sites with 2.5 seconds or less LCP have a good user experience. 

The site has opened but images are not displayed – Bad LCP performance

 Website failed to load and crashes

First Contentful Paint (FCP) – 

FCP is the time taken by the app or website to load the largest and first contentful page. It calculates the duration from when the page begins to load to the time when any page’s content is displayed on the screen.

For this metric, “content” refers to text, images (including background images), <svg> elements, or non-white <canvas> elements.

FCP TimeColor Coding 
0-1.8Green(Fast)
1.8 – 3Yellow (Moderate)
Over 3Red (Slow)

Total Blocking Time (TBT) – The time interval between FCP and TTI 

TBT calculates the total period of time that a website has been blocked from responding to user input. When a task takes more than 50 milliseconds (ms) (which is known as long task) to complete on the main thread, the main thread gets blocked and the browser cannot stop an ongoing task. Therefore, if a user does interact with the page in the middle of a long task, the browser will have to wait until the task is finished before responding. The user is likely to notice the delay and consider the page to be unresponsive. Ex: When a video ad pops up.

Total Time to Interactive (TTI) – Time taken by the website/app to get ready to collect inputs from the user (Username, password, etc).

TTI estimates the amount of time it takes for a page to load from the time it first loads until its primary sub-resources have loaded.

Techniques like server-side rendering (SSR) may result in situations where a page appears interactive (that is, links and buttons are visible on the screen) but it’s not interactive as the main thread is blocked or the JavaScript code controlling those elements hasn’t been loaded.

Cumulative Layout Shift (CLS) 

A webpage’s CLS tells you how much it suddenly shifts throughout the course of its existence. A high CLS score is achieved if a website visitor viewed a page and, as they were reading it, the banner loads and the page jumps down.

CLS is a component of Google’s Core Web Vitals, along with Largest Contentful Paint and First Input Delay (how long it takes for a website to be interactive or “clickable”). Each page that Google web crawlers index has a CLS measurement.

Tips to optimize your website’s load time:

  • Anticipate your user traffic

Predict when there might be a spike and how much can be the maximum traffic you can expect – for instance, days like sales, special offers, etc.

  • Understand and study the Consumer behavior 

Narrow down and find out what are the user patterns – peak traffic achieved during which time intervals, which is the most visited section, and how much time a user spends on the website or app. Ensure the most visited sections perform well always and be extra cautious during peak times.

  • Ask and ask always

 Product/ Service feedback is pivotal when planning where to optimize and how to achieve the best results for user engagement, satisfaction, and retention. Surveys are an evergreen and classic way to do a self-assessment.

  • Keep track and scale up when needed

Track the above-mentioned data from time to time, document it, and do a detailed data analysis. Do a regular check and scale up as your user base increases. Remember, the performance of a website might be good for thousands of users but might need to improve when the user base expands to a lakh.

  • Competitive Analysis

Take inspiration from competitors in your field. Study how many users they have, how seamless their site features are, and how time efficient they are.

  • Introduce new features to save the users time like image optimization, and optimizing your Javascript codes which will help you to improve the user experience.

To engage your users for a longer time, always save their time and effort :) 

We’ll discuss web optimization techniques in the next blog. Stay Tuned!

Further reading: Why Web Optimization is a Must for Businesses?

Cancel

Knowledge thats worth delivered in your inbox

Data Sharing: The Healthcare Superpower You Didn’t Know Was Needed

By :

Imagine a world where doctors can instantly access a patient’s entire medical history, from birth to the present, with just a few clicks. A world where researchers can rapidly analyze vast digital health records to discover groundbreaking new treatments. This seamless access to information isn’t just a dream—it’s the potential reality of effective data sharing in healthcare.

By breaking down the barriers that currently isolate crucial healthcare data, we can transform patient care, streamline operations, and accelerate medical advancements. The future of healthcare lies in the power of connected information, ensuring that every decision made is informed, accurate, and timely.

Barriers that are hindering Data Sharing in Healthcare

1. Data Silos: Healthcare providers often store patient information in isolated systems that do not communicate with each other. This fragmentation leads to a lack of coordination, duplicated tests, and gaps in patient care.

2. Interoperability Issues: Different healthcare organizations use various electronic health record (EHR) systems like Epic electronic health record, charm electronic health records and Cerner electronic health record, which are not always compatible. This lack of standardization makes it difficult to share data seamlessly across platforms.

3. Privacy and Security Concerns: The healthcare industry handles sensitive patient information. The risk of data breaches and unauthorized access creates reluctance among institutions to share data freely.

4. Regulatory and Compliance Barriers: Strict regulations like HIPAA (Health Insurance Portability and Accountability Act) in the US and GDPR (General Data Protection Regulation) in Europe mandate stringent data protection measures. While these regulations are essential for protecting patient privacy, they can also hinder data sharing.

5. Resistance to Change: The healthcare industry can be slow to adopt new technologies, and some providers may be resistant to changing their workflows to incorporate healthcare data analyst insights and data-sharing solutions data-sharing solutions.

Technological Innovations Transforming Data Sharing in Healthcare

By employing innovative tools and strategies, the industry can close the gap between isolated data systems and foster a more connected, efficient, and secure environment for patient care. Here’s a look at the key technological techniques making this possible:

  1. Interoperability Standards: Technologies like Fast Healthcare Interoperability Resources (FHIR) and Health Level 7 (HL7) are setting the foundation for seamless data exchange between different healthcare systems. These standards ensure that patient information can be shared across platforms without compatibility issues, eliminating data silos and enabling better coordination of care.
  2. Blockchain Technology:  According to a Deloitte report, 55% of healthcare executives consider blockchain a top-five strategic priority for enhancing data integrity and security.Blockchain offers a decentralized, secure way to store and share electronic health records. Its tamper-proof nature ensures that data remains unaltered and trustworthy, which significantly boosts confidence among healthcare providers when sharing sensitive information. This technology is crucial for maintaining the integrity and security of health records. 
  3. Cloud Computing: Cloud-based platforms allow healthcare providers to store and access health records remotely, ensuring that patient information is available to authorized users at any time, from anywhere. This flexibility improves collaboration between different healthcare entities and helps streamline patient care, especially in multi-location healthcare systems.
  4. Artificial Intelligence (AI) and Machine Learning: AI-driven tools are revolutionizing the way healthcare data is processed and shared. These technologies can standardize vast amounts of data, identify patterns, and enable predictive analytics. By automating data sharing and analysis, AI and machine learning reduce the burden on healthcare providers and improve decision-making processes.
  5. Telemedicine and Internet of Things (IoT): The rise of telemedicine and IoT devices has expanded the sources of digital health records. Wearable devices, remote monitoring systems, and telehealth platforms generate valuable patient information that can be shared in real-time with healthcare providers. This continuous flow of data allows for timely interventions and personalized care, bridging the gap between patients and providers.
  6. Health Information Exchanges (HIEs): HIEs facilitate the secure sharing of patient information among different healthcare providers. By connecting various systems, HIEs ensure that patient data is accessible where and when it’s needed, enhancing continuity of care across different providers and locations.
  7. Data Encryption and Anonymization: To address privacy concerns, data encryption and anonymization techniques are used to protect sensitive patient information. These methods ensure that data can be shared securely without compromising patient privacy, balancing the need for data access with stringent privacy regulations.
  8. Standardization of Data Formats: The adoption of standardized data formats, such as FHIR, allows for consistent and seamless data exchange across different platforms. This standardization reduces interoperability issues and ensures that healthcare providers can access and utilize patient data more efficiently.
  9. Collaboration and Partnerships: Collaboration between healthcare providers, technology companies, and regulatory bodies is crucial for overcoming data-sharing challenges. Initiatives like the CommonWell Health Alliance and the Sequoia Project are creating nationwide networks for data sharing, demonstrating the power of partnerships in advancing healthcare technology.
  10. Patient-Centered Approaches: Empowering patients to take control of their own health data is another technique used to bridge the gap. Through patient portals and apps, individuals can access their health records and share them with healthcare providers as needed. This not only improves patient engagement but also ensures that providers have the information they need to deliver optimal care.

Conclusion: The Path Forward

Bridging the data-sharing gap in healthcare is essential for improving patient outcomes, enhancing public health, and advancing medical research. While significant challenges remain, the combination of technological innovations and collaborative efforts is paving the way for a more integrated and efficient healthcare system.

As we continue to adopt and refine these technological techniques with the vision of a fully connected healthcare ecosystem, where data flows freely and securely between stakeholders and becomes increasingly attainable. By embracing these innovations and fostering partnerships, we are setting the stage for a future where healthcare is not only more accessible and personalized but also more proactive in addressing the complex challenges of tomorrow. The path forward is clear: by closing the data-sharing gap, we can unlock the full potential of healthcare and ensure better outcomes for all.

Cancel

Knowledge thats worth delivered in your inbox

Loading More Posts ...
Go Top
ml floating chatbot